If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+5^2=9^2
We move all terms to the left:
a^2+5^2-(9^2)=0
We add all the numbers together, and all the variables
a^2-56=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| 36x^2-60x=0 | | 2x+24=x+5 | | 12n=62 | | 2(-11x+7)=11x-19 | | 3n=40-10 | | 5u^2+9u=0 | | a^2+20^2=25^2 | | 6n=6+18 | | 5x-4x+8=8-3x | | -5-3x=1x-3 | | 4x+3=17. | | 6n=3(2+6) | | 180=50-x+19 | | a^2+1^2=2^2 | | 2.5n=200 | | 5-3x=1x+3 | | k+22=29k | | 80^2+b^2=89^2 | | 25+5n=55 | | 5^2+b^2=7^2 | | v(-14+6=-56 | | 36^2+b^2=60^2 | | 180=108+3x+3 | | 1/3(3w-15)=~1/5(25-2w) | | 1.68(h)=6.72 | | a^2+9^2=10^2 | | 180=80+2x10 | | 96^2+b^2=100^2 | | ¼n=25 | | 4x➗9=37 | | 525=10n | | a^2+60^2=75^2 |